
1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering
Email: bkia -at- bu.edu

Operating Systems

2

What is an Operating System
Operating System handles
• Memory Addressing & Management
• Interrupt & Exception Handling
• Process & Task Management
• File System
• Timing
• Process Scheduling & Synchronization

Examples of Operating Systems
• RTOS – Real-Time Operating System
• Single-user, Single-task: example PalmOS
• Single-user, Multi-task: MS Windows and MacOS
• Multi-user, Multi-task: UNIX

3

Real-Time Operating Systems
Operating systems come in two flavors, real-time
versus non real-time
The difference between the two is characterized
by the consequences which result if functional
correctness and timing parameters are not met in
the case of real-time operating systems
Real-time operating systems themselves have two
varieties, soft real-time systems and hard real-
time systems
Examples of real-time systems:
• Food processing
• Engine Controls
• Anti-lock breaking systems

2

4

Soft versus Hard Real-Time

In a soft real-time system, tasks are
completed as fast as possible without
having to be completed within a specified
timeframe
In a hard real-time operating system
however, not only must tasks be
completed within the specified timeframe,
but they must also be completed
correctly

5

Foreground/Background Systems
The simplest forms of a non real-time
operating systems are comprised of
super-loops and are called
foreground/background systems
Essentially this is an application
consisting of an infinite loop which calls
functions as may be necessary to
perform various tasks
The functions which are called to perform
these tasks are background functions,
and are executed at the task-level of the
operating system

6

F/B Systems

On the other hand, processes which must
be handled in a timely fashion such as
interrupts are foreground processes and
are executed at interrupt-level
Most microcontroller based embedded
systems, such as microwaves and
washing machines are
foreground/background systems

3

7

Definitions
The Critical Section of a code is code which needs
to be executed indivisibly and without
interruption. The operating system usually
disables interrupts before entering a critical
section, and enables them again after its
completion
A resource is any object used by a task. It can be
anything from an I/O pin to a data structure
Shared resources are resources that can be used
by more than one task. However, to prevent data
corruption, each task needs to obtain exclusive
access to the shared resource through a
mechanism called mutual exclusion

8

Definitions

A task, also referred to as a thread, is an
independent section of a program
complete with its own stack and CPU
register space
Each task is assigned a priority, and is
always placed in one of dormant, ready,
running, waiting, or ISR states
A dormant task is a task which is
available in memory but is not submitted
to the kernel for execution

9

Definitions

A task is deemed ready when it is
available for execution but its priority is
less than the current task priority of the
system
Consequently, a task is running when its
current priority is met and the CPU starts
to execute it
A task is considered in wait mode when it
is waiting for a resource to become
available

4

10

Definitions

And finally a task is considered
interrupted when the CPU is in the
process of servicing an interrupt
If a task needs to be put on hold so that
another task can execute, a context
switch or a task switch occurs
In this event, the processor saves the
task’s context (CPU registers) usually
into a secondary storage area, and loads
the new task’s context from the same

11

Kernels
The engine within the operating system
which is in charge of handling tasks and
communications between them is called
the kernel
A real-time kernel for instance manages
breaking up an application into a series of
tasks to be performed in a multi-tasking
fashion
Multitasking systems maximize the usage
of a CPU and allow programmers to easily
manage the complexities associated with
real-time systems

12

Kernels
Kernels come in two flavors, pre-emptive
kernels, and non pre-emptive kernels
Pre-emptive kernels are used when
system response times are of critical
concern, and as such most real-time
operating systems are pre-emptive in
nature
Non pre-emptive kernels require that the
tasks themselves give up using the CPU,
and therefore this is a process which
must be performed frequently

5

13

Non Pre-emptive Kernels
One advantage of using a non-pre-
emptive system is that interrupt latencies
are low
Another advantage is that programmers
can use non re-entrant functions within
their code
This is because each task runs to
completion before another task executes
By the same token, there is less
headache associated with the
management of shared resources

14

Non Pre-emptive Kernels

The biggest disadvantage of a non pre-
emptive kernel is task responsiveness.
This is because a high priority task is
made to wait until the current task (even if
of a lower priority) has finished execution
Interrupts can preempt a task, however
even if a higher priority task is scheduled
within an interrupt service routine, it still
cannot run until the CPU operation is
relinquished by the current task

15

Pre-emptive Kernels

As mentioned earlier, most real-time
operating systems are pre-emptive
This is because the execution of a higher
priority task is deterministic
However, programs written to run on a
pre-emptive system must only use re-
entrant functions in order to guarantee
that both a low and a high priority task
can use the same function without fear of
data corruption

6

16

Pre-emptive Kernels

One important difference between pre-
emptive and non pre-emptive systems is
that upon executing an interrupt service
routine, the pre-emptive system always
runs the highest ready task (not
necessarily the task which was
interrupted), whereas a non pre-emptive
system returns to the task which was
interrupted

17

Reentrancy
Not just a dirty word!
Reentrant functions are critical to the
proper operation of a preemptive OS
A reentrant function can be used by more
than one task without fear of data
corruption
Also, a reentrant function can be
interrupted at any point and restarted at a
different time without loss of data
Reentrancy is achieved by using local
data, or by protecting global data

18

Priority

Tasks need a mechanism by which they
can be prioritized
This is done at the kernel level and at
compile time by the programmer
Task priorities can be static, in that the
priority of a task does not change for the
duration of the application’s execution
On the other hand, priorities are deemed
dynamic if task priorities can be changed
at runtime

7

19

Priority
The advantage to being able to change
priority during runtime is that one can
avoid occurrence of what is known as
Priority Inversion
Priority inversion occurs when the
priority of a higher priority task is
virtually reduced to the priority of a lower
priority task
This happens specially when the higher
priority task is waiting for a resource
which is in use by a lower priority task

20

Priority Inversion

21

Mutual Exclusion (mutex)
The easiest way for tasks to communicate
between each other is through shared data
structures
However, while exchanging data through shared
resources makes communication easy, it poses a
special challenge when more than one process
may change a shared resource at the same time
Therefore it is critical to ensure that a task has
exclusive access to a shared resource before it
changes any data

Mutex

8

22

Mutex

The most important mechanism which
must be provided at the CPU level in
order to achieve mutual exclusivity is a
test-and-set-lock (TSL) instruction
Test-and-set-lock instructions come in
various mnemonics and operations, but
they all perform a single critical task: to
allow an atomic operation which both
tests (checks) a resource and sets
(switches) its value in one operation

23

Semaphores
There are other
operations which can
also be employed,
such as disabling
interrupts, disabling
scheduling, and using
semaphores
Semaphores are of
great use in real-time
kernels. They allow
operations on shared
resources, and allow
tasks to synchronize
their operations

24

Semaphores

A semaphore is basically a flag which
signals the right to use a shared resource
A binary semaphore is either set or not
set which then allows a task to use or
have to wait to use a shared resource
A counting semaphore on the other hand
allows for more complex scenarios

9

25

Dining Philosopher Problem

26

Scheduling
A central piece of an operating system is
the scheduler
The scheduler maintains an overview of
all tasks which are running or pending
and decides which one to execute next
There are many algorithms to determine
which task to run next ranging from the
simple first-in-first-out and shortest-job-
first, to more complex priority-based
algorithms found on real-time operating
systems

27

Scheduling
The oldest, simplest, fairest, and most widely
used scheduling algorithm is round robin, where
each process is assigned a time interval during
which it is allowed to run
Round robin scheduling makes the implicit
assumption that all tasks are of the same priority.
Priority based scheduling on the other hand takes
the different priorities of tasks into account during
scheduling, and changes them dynamically as
may be necessary to increase system throughput

10

28

Deadlocks
Since tasks share resources, a deadlock can
occur if there is an interdependency between two
tasks and their respectively locked resources
Four conditions must be met for a deadlock to
occur:
• Mutual exclusion – a resource is already assigned
• Hold and Wait – a process which has already been

granted resources can seek new ones
• No preemptive condition – resources previously

granted cannot be forcibly taken away
• Circular wait condition – there is a circular condition

of at least two processes, each waiting for a
resource held by the other one

29

Deadlock Recovery

There are various means to recover from
deadlocks
• Recover by preemption: temporarily take away

a resource from its current owner so that
another process can continue executing. Not
easy to do.

• Recover through rollback: processes which
hold the required resource are rolled back to a
point in time before it requested the resource.
All work done since the last checkpoint is lost.

• Recover through killing the process: the
simplest and crudest way of recovery

30

Interrupts
Interrupts are primarily hardware
mechanisms used to notify the processor
that an asynchronous even has occurred
When an interrupt occurs, the CPU saves
the current context and jumps to the
Interrupt Service Routine (ISR)
Microprocessors can individually enable
or disable interrupts, and assign different
interrupt priorities to individual interrupt
sources
On a real-time system, interrupts should
be disabled for as little as possible

11

31

Interrupt Latency

By far one of the most important
characteristics of a real-time kernel is the
amount of time for which interrupts are
disabled
The longer interrupts are disabled, the
longer the interrupt latency of the system
Interrupt latency is the maximum time
interrupts are disabled, plus the time it
takes to start executing the first
instruction of the ISR

32

Memory Management

Parkinson’s Law:
Programs expand to fill the memory available
to hold them!

The part of the operating system which
handles memory management is referred
to as the Memory Manager
The section of the processor which
handles memory management is referred
to as the Memory Management Unit
(MMU)

33

Memory Management
The memory management system is
designed to make memory resources
available to processes safely and
efficiently
The term memory management refers to
the rules that govern mappings between
the physical and virtual memory
We are primarily concerned with two
types of Memory Management:
• Memory management over the Logical (virtual)

address space
• Memory management over the Physical

address space (main memory)

12

34

Memory Management
The memory management system is
designed to make memory resources
available safely and efficiently among
threads and processes:

• It provides a complete address space for
each process, protected from all other
processes.

• It enables program size to be larger than
physical memory.

• It allows efficient sharing of memory
between processes.

35

Relocation
Programs are relocatable, meaning that at
run time the operating system will assign
physical addresses to your program
(relocate it) prior to loading it into the
physical memory
This also allows the operating system to
swap the program out of memory and
reload it at a different location at a later
time
Virtual Memory is essentially a technique
which allows execution of a program
which may not fit into the physical
memory

36

Relocation

Therefore the Operating System fakes a
program into thinking that there is more
memory space than is physically
available to it, and Virtual Address is
translated into Physical address

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

